Diffuse alterations in grey and white matter associated with cognitive impairment in Shwachman–Diamond syndrome: Evidence from a multimodal approach

نویسندگان

  • Sandra Perobelli
  • Franco Alessandrini
  • Giada Zoccatelli
  • Elena Nicolis
  • Alberto Beltramello
  • Baroukh M. Assael
  • Marco Cipolli
چکیده

Shwachman-Diamond syndrome is a rare recessive genetic disease caused by mutations in SBDS gene, at chromosome 7q11. Phenotypically, the syndrome is characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal dysplasia and variable cognitive impairments. Structural brain abnormalities (smaller head circumference and decreased brain volume) have also been reported. No correlation studies between brain abnormalities and neuropsychological features have yet been performed. In this study we investigate neuroanatomical findings, neurofunctional pathways and cognitive functioning of Shwachman-Diamond syndrome subjects compared with healthy controls. To be eligible for inclusion, participants were required to have known SBDS mutations on both alleles, no history of cranial trauma or any standard contraindication to magnetic resonance imaging. Appropriate tests were used to assess cognitive functions. The static images were acquired on a 3 × 0 T magnetic resonance scanner and blood oxygen level-dependent functional magnetic resonance imaging data were collected both during the execution of the Stroop task and at rest. Diffusion tensor imaging was used to assess brain white matter. The Tract-based Spatial Statistics package and probabilistic tractography were used to characterize white matter pathways. Nine participants (5 males), half of all the subjects aged 9-19 years included in the Italian Shwachman-Diamond Syndrome Registry, were evaluated and compared with nine healthy subjects, matched for sex and age. The patients performed less well than norms and controls on cognitive tasks (p = 0.0002). Overall, cortical thickness was greater in the patients, both in the left (+10%) and in the right (+15%) hemisphere, significantly differently increased in the temporal (left and right, p = 0.04), and right parietal (p = 0.03) lobes and in Brodmann area 44 (p = 0.04) of the right frontal lobe. The greatest increases were observed in the left limbic-anterior cingulate cortex (≥43%, p < 0.0004). Only in Broca's area in the left hemisphere did the patients show a thinner cortical thickness than that of controls (p = 0.01). Diffusion tensor imaging showed large, significant difference increases in both fractional anisotropy (+37%, p < 0.0001) and mean diffusivity (+35%, p < 0.005); the Tract-based Spatial Statistics analysis identified six abnormal clusters of white matter fibres in the fronto-callosal, right fronto-external capsulae, left fronto-parietal, right pontine, temporo-mesial and left anterior-medial-temporal regions. Brain areas activated during the Stroop task and those active during the resting state, are different, fewer and smaller in patients and correlate with worse performance (p = 0.002). Cognitive impairment in Shwachman-Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere) and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry.

Preterm birth is a leading risk factor for neurodevelopmental and cognitive impairment in childhood and adolescence. The most common known cerebral abnormality among preterm infants at term equivalent age is a diffuse white matter abnormality seen on magnetic resonance (MR) images. It occurs with a similar prevalence to subsequent impairment, but its effect on developing neural systems is unkno...

متن کامل

Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability.

BACKGROUND Although grey matter damage in multiple sclerosis is currently recognized, determinants of grey matter volume and its relationship with disability are not yet clear. OBJECTIVES The objectives of the study were to measure grey and white matter volumes across different disease phenotypes; identify MRI parameters associated with grey matter volume; and study grey and white matter volu...

متن کامل

Grey and white matter atrophy in a large cohort of multiple sclerosis patients: Relation to MRI parameters and impact on clinical disability

Th e abundance of grey matter damage in multiple sclerosis and its clinical relevance is currently fully recognized. Although previous studies have provided information regarding determinants of grey matter atrophy and its relationship with disability in multiple sclerosis, the majority of these studies were limited by their sample size. Th e objectives of the current study were therefore to: 1...

متن کامل

White matter alterations in Parkinson’s disease with normal cognition precede grey matter atrophy

INTRODUCTION While progressive MRI brain changes characterize advanced Parkinson's disease (PD), little has been discovered about structural alterations in the earliest phase of the disease, i.e. in patients with motor symptoms and with normal cognition. Our study aimed to detect grey matter (GM) and white matter (WM) changes in PD patients without cognitive impairment. METHODS Twenty PD pati...

متن کامل

Dynamics of White Matter Plasticity Underlying Working Memory Training: Multimodal Evidence from Diffusion MRI and Relaxometry

Adaptive working memory (WM) training may lead to cognitive benefits that are associated with white matter plasticity in parietofrontal networks, but the underlying mechanisms remain poorly understood. We investigated white matter microstructural changes after adaptive WM training relative to a nonadaptive comparison group. Microstructural changes were studied in the superior longitudinal fasci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015